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A NOTE ON PERRIN PSEUDOPRIMES 

STEVEN ARNO 

ABSTRACT. The cubic recurrence A(n + 3) A(n) + A(n + 1) with initial 
conditions A(0) = 3, A(l) = 0, A(2) -2, known as Perrin's sequence, is 
associated with several types of pseudoprimes. In this paper we will explore 
a question of Adams and Shanks concerning the existence of the so-called Q 
and I Perrin pseudoprimes, and develop an algorithm to search for all such 
pseudoprimes below some specified limit. As an example, we show that none 

14 exist below 10 

1. INTRODUCTION 

The cubic recurrence 

A(n + 3) = A(n) + A(n + 1) 

with initial conditions A(0) = 3, A(l) = 0, A(2) = 2 has several features 
which make it useful in the study of primes. Some of these features are quite 
old, dating back at least to an 1876 paper of Lucas [4] in which he examined 
A(n) for n > 0 and proved that ntA(n) if n is a prime. Later, the sequence 
was reexamined by Perrin [5], and subsequently it became known as Perrin's 
sequence. 

There are several types of pseudoprimes that one can associate with Perrin's 
sequence. Motivated by the discussion above, we define a pseudoprime to be 
a composite n such that njA(n). The utility of this definition is of course 
dependent on the time it takes to calculate A(n) modulo n, so it is fortunate 
that there is a simple O(logn) algorithm to do this [1]. This algorithm even 
gives us more than we requested. Given any integers m and n, it provides a 
sextuple of the form 

A(-n - 1), A(-n), A(-n + 1), A(n - 1), A(n), A(n + 1) (mod m), 

which we refer to as the signature of n if n = m, and the signature of n 
(mod m) if n /z m The following theorem describes the signature of a prime 
(see [1]). 

Theorem 1. Let f (x) = X - x - 1. If f(x) splits completely in (Z/pZ)[x], 
then we call p an S prime. The signature of an S prime is 
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If f(x) has exactlv one root in Z/pZ, then we call p a Q prime. The signature 
of a Q prime is 

A -1 BBOC, 

where 

B3 -B-=0(modp), 

(1) A=B 2+2B(modp), 
2 -I C=B -2B (modp). 

If f (x) is irreducible over (Z/pZ)[x], then we call p an I prime. The signature 
of an I prime is 

0 -1 D DO -1, 

where 

(2) D + D = -3 (mod p), (D'- D)2 = -23 (mod p). 
Proof. The proof is a simple computation. We illustrate by proving (1). Let 
E denote the algebraic closure of Z/pZ, and ap, ,Bfp, y,p e E the roots of 

f(x). Since the mapping 0: E X E defined by q(x) = xP permutes the roots 
of f(x), and f(x) has exactly one root in Z/pZ, we can assume without loss 
of generality that a1p = cap, ,Bp =y1,and yP =fl1,. Define 

C(n) = a" + nf + nA p 1,'+ y 

and note that A(n) = C(n) (mod p). It follows that 

0 = C(p)C(- l) 

= C(p - 1) + ap(p + yp )+ap (fP+yp)+2 

= cQp - 1 ) + ap - Ir + 7-1 ) + c ,a- + yp ) + 2atpal 
p (p p p 9p p 

= C(p - 1) + ap(C(-l) + C()) = C(p - 1) - ap. 0 

This theorem provides a simple way to strengthen our definition of a pseudo- 
prime, i.e., a composite n with an S, Q, or I signature. Note that a prime can 
have only one type of signature (assuming that p : 23). Indeed, from (2) we 
see that D' $ D, which distinguishes I-type signatures, and from (1) combined 
with the fact that 3 is a solution of f(x) if and only if p = 23, we distinguish 
between S- and Q-type signatures. 

Combining our signature test with a quadratic character test leads to the 
notion of a Perrin pseudoprime. As is well known, one can evaluate a quadratic 
character in O(logn) steps, so the cost for this addition is relatively small. Our 
test is based on the following proposition (see [1]). 

Proposition 1. If p is a Q prime, then (-23) = -1 . If p is an S or I prime, 

p523,then (-23)= I 
p 

Definition. An odd composite n not divisible by 23 with an S (respectively 
Q or I) signature and an appropriate quadratic character ( +23) is called an S 
(respectively Q or I) Perrin pseudoprime. 
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Our interest in Perrin pseudoprimes stems from a conjecture of Shanks which 
says that no Q or I Perrin pseudoprimes exist. If this were true, we would have 
an O(log n) primality test for 5/6 of the primes. 

2. SEARCHING FOR Q AND I PSEUDOPRIMES 

This section is devoted to the description of an algorithm for finding all Q 
and I pseudoprimes below some designated limit. In order to simplify our dis- 
cussion, we specify the limit 10 . Our algorithm is based on the following the- 
orem, which provides useful representations for certain types of pseudoprimes 
(see [1]). 

Theorem 2. Let denote the period of the sequence {A(n) (mod p)} . If an I 
prime p divides an I pseudoprime n, then 

2 n = p+ppopk, or n = p w+p(opk 

for some integer k . If a Q prime p divides a Q pseudoprime n, then 

n = p + p-Pk 

for some integer k. 

Remark. Various results about cop can be found in [1, 2]. For our purposes it 
will suffice to note that if p is an S prime, then w1)p P - 1 , if p is a Q prime, 

then -)pp2 - 1, and if p is an I prime, then _)PIp2 +p + 1. 

Proof of Theorem 2. If n has an I signature modulo n, it has an I signature 
modulo p . By Theorem 1, this would require a triple of the form D, 0, -1 to 
occur modulo p, where D satisfies a quadratic equation. Since we are working 
over a field, there are at most two places where this can occur in the course of 
a given period w(p). As two such places are known via Theorem 1, i.e., at p 

2 and at -p - 1 = p (mod tp), the first part of our theorem is established. The 
second part is proved similarly. o 

A general description of the algorithm. Theorem 2 tells us that there are about 
1014/pu potential pseudoprimes that are multiples of a given Q or I prime p. 

p 
If p is of any reasonable size, we can check these multiples one-by-one. Further, 
since most Q and I primes have periods around p 2, only a small number of 
primes greater than 1014/3 require checking at all. With this in mind, we begin 
our attack by showing that if n is a Q (respectively I) pseudoprime and n < 

1014, then n is divisible by a Q (respectively I) prime p such that 1< p < 107. 
This allows us to make full use of Theorem 2. If p is small, however, the cost 
of checking potential multiples of p can be prohibitive. Consequently, the next 
stage of our attack is devoted to showing that we can always assume that p is 
of reasonable size. 

It is instructive to understand why this algorithm will not work effectively 
for finding S Perrin pseudoprimes. First, it is possible that a Q or I prime 
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will divide an S pseudoprime (see [6]). This makes it difficult to exploit an 
S representation theorem like Theorem 2. Further, since S primes have small 
periods, the utility of such a representation theorem is greatly restricted in any 
case. 

A detailed description of the algorithm. For the sake of simplicity we describe 
the algorithm only as it pertains to I pseudoprimes. The algorithm for Q pseu- 
doprimes is exactly the same-just change every I to a Q, and every Q to an I 
in what follows. 

Adams and Shanks show in [ 1 ] that no Q prime can divide any I pseudoprime. 
If we also knew that no S prime could divide any I pseudoprime, we would be 
able to invoke Theorem 2 directly, but this appears to be difficult to prove. In 
fact, it may not even be true. However, given a particular S prime p, it is usually 
easy to show that p cannot divide any I pseudoprime. Indeed, if pin, then n 
must have an I signature modulo p. And since the sequence {A(m) (modp)} 
is periodic, one can check every triple in this sequence to see if such a signature 
occurs. Further, since the S primes have relatively small periods, this check can 
be done efficiently for S primes of reasonable size. This brings us to the first 
step of our algorithm. 

Step 1. Show that no S prime p, 1 < p < 107, can divide any I pseudoprime. 

Corollary. If n is an I pseudoprime and n < 1014, then n is divisible by an I 
prime p such that I 

< p < 107. 

Comment. This is the most time-consuming part of our algorithm, taking rough- 
ly one day on one processor of a CRAY 2 (for both the Q and the I). 

We are now in a position to use Theorem 2, though as pointed out above, 
direct use of this theorem can only be made if p is large enough. 

Step 2. Use Theorem 2 to check all potential multiples of I primes p such that 
300 <p < 107. 

Corollary. Since we find no I pseudoprimes via Step 2, we conclude that if n is 
an I pseudoprime and n < 1014, then n is divisible by an I prime p such that 
1 <p < 300. 

Comment 1. The bound 300 is somewhat arbitrary. By raising this bound we 
would greatly reduce the time required for Step 2, but increase the time required 
for Steps 3, 4, and 5. 

Comment 2. Instead of checking the signatures of potential pseudoprimes di- 
rectly, one first sieves, using Q and S primes. 

We now consider the case where p is small. To circumvent the problems 
that arise here, let a , f,, and y be the roots of f(x) over C, and note that 

A(mp) = mp + 3mp + yp= (am + fm + Ym)P (modp) 

=A(m) (modp)( 
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It follows that if n = mp is a Perrin pseudoprime, then 

(3) pl(A(m), A(-m) + 1). 

Hence, given any number m, we can find all prime multiples of m that are 
potentially I pseudoprimes by finding the prime divisors of the gcd(3). We can 
then check the signatures of these numbers directly. This is our next step. 

Step 3. Show that no prime multiple of an I prime p, 1 < p < 300, is an I 
pseudoprime. 

Corollary. If n is an I pseudoprime such that n < 1014, then n is divisible by 
at least two I primes p1, P2 such that 1 < P1, P2 < 300. 

Now use the Chinese remainder theorem to modify Theorem 2: if p1 and 
P2 are two I primes which divide an I pseudoprime n, then for some integer 
k,n 

d 
where d = (p1 I)p , P2w ) and C is easily calculated. We can now proceed as 
in Step 2. 

Step 4. Use the modified version of Theorem 2 outlined above to check all 
potential multiples of products of distinct I primes p1, P2 such that 1 < p1, 
P2 < 300. 

Corollary. If n is an I pseudoprime less than 1014, then n is divisible by the 
square of an I prime p such that 1 < p < 300. 

Comment. Step 4 would be quite long as described, since the progression for 
the primes 3 and 13 is still somewhat dense. However, by first applying Step 3 
to numbers of the form m = 3q, where q is an I prime less than 300, we will 
derive the corollary: if n is an I pseudoprime such that n < 1014, then either 
n is divisible by at least two I primes p1, P2 such that 12 < p, P2 < 300, or 
91n . It follows that we need to perform Step 4 only on pairs of distinct primes 
in the range 12 < p < 300. This modification will significantly speed up Step 
4, and can be extended if required. 

Step 5. Use the method described for Step 1, i.e., check every triple in the 
sequence {A(m) (mod n)} (with n = p 2) to show that 13 is the only small I 
prime whose square can divide any I pseudoprime. Also show that 13 cubed 
cannot divide any I pseudoprime. 

Corollary. If n is an I pseudoprime such that n < 1014, then n is of the form 
160p, or 3. 169p, for some prime p. 

Comment. It is now a simple matter to apply Step 3 with m = 169 and m = 
507 to complete our search. 

Results. Our implementation of this algorithm on a CRAY 2 was used to show 
14 that there are no Q or I Perrin pseudoprimes below 1 0 . A different algorithm 
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is given in [6], wherein it is shown that there are none below 50 x 109; it is 
simpler than ours, but less powerful as well. 

3. CALCULATIONS 

Some comments about the calculations are in order, since there are no pseu- 
doprimes to list. There are 664579 primes less than 107; 332466 Q primes, 
221544 I primes, and 110569 S primes. As mentioned earlier, the search in 
Step 2 only involves those primes for which pc p < 1014 , and the number of 
such primes relative to the potential number of primes is some indication of 
the strength of the method. It is therefore noteworthy that only 4255 of the 
Q primes and 1840 of the I primes satisfy this condition. Concerning Step 5, 
we note that 13 was the only I prime below 300 whose square could divide 
an I pseudoprime, while 97 was the only Q prime. As an example for Step 
3, we note that (A(281), A(-281) + 1) = 4496 = 2 . 281. Since a pseudo- 
prime must be odd, we conclude that if there is one of the form 28 lp, with 
p prime, then it is 281 2, which can be checked directly. Another example is 

2 2 7 3 
given by (A(97 ), A(-972) + 1) = 9560754560 = 2 5. 75 .97.449. Since 449 
is an S prime, we know from Step 1 that it does not divide a Q pseudoprime, 

2 2 and a simple check shows that neither 97 . 5, nor 97 . 7, are pseudoprimes. 
The entire running time for the search below 1014 was about 30 hours on one 
processor of a CRAY 2. Most of the time was spent in Step 1. 
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